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SUMMARY 

In this paper, free surface flow problems involving large free surface motions are analysed using finite 
element techniques. In solving these problems an arbitrary Lagrangian-Eulerian (ALE) kinematical 
description of the fluid domain is adopted, in which the nodal points can be displaced independently of 
the fluid motion. This formulation leads to an easy and accurate treatment of fluid-fluid interfaces, and 
greater distortions in the fluid motions can be handled than would be allowed by a purely Lagrangian 
method. 

This paper describes the basic methodology, presents finite element approximations and discusses such 
matters as stability, accuracy and rezoning. The generality and the advantage of the present method are 
discussed, and its versatility is demonstrated through a few numerical experiments. 

KLY WORDS ALE Method Incompressible Viscous Flow Velocity Correction Method Free Surface Linear 
Interpolation 

INTRODUCTION 

This paper presents the development of a new scheme to numerically simulate two-dimensional 
flow of an incompressible fluid with a free surface. Until very recently finite element solutions 
of unsteady, free surface flow invariably employed the Eulerianl-lo or Lagrangian"-' 
descriptions of motion. Eulerian finite element calculations are characterized by a co-ordinate 
system that is stationary in the laboratory reference frame, so that fluid moves from element to 
element. The Eulerian method has several advantages: (a) the fluid can undergo arbitrarily great 
distortions without loss of accuracy, and (b) outflow 'walls' are particularly easy to handle. The 
difficulties encountered with basic Eulerian methodology are: (a) material interfaces lose their 
sharp definition as the fluid moves through the mesh, so that basic Eulerian calculations requires 
special logic for interfaces, which is very complicated, and often leads to inaccuracies, and (b) 
local regions of fine resolution are difficult to achieve. On the other hand, Lagrangian finite 
element calculations are characterized by a co-ordinate system that moves with the fluid. 
Accordingly, each computational element always contains the same fluid elements. The 
Lagrangian method has several useful and valuable properties: (a) material interfaces can be 
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specifically delineated and precisely followed, (b) free surface boundary conditions are easily 
applied and (c) curved rigid boundaries of arbitrary shape can be present. The principal 
disadvantage is the inability to cope easily with strong distortions, which so often characterize 
flows of interest. 

To circumvent the above-mentioned difficulties in both Eulerian and Lagrangian approaches, 
techniques have been proposed wherein the nodal points can be displaced independently of the 
fluid motion. The approach is described as an arbitrary Lagrangian-Eulerian (ALE) method, 
and is a combined Lagrangian and Eulerian computing method for fluid flow at all speeds based 
on Hirt’s16 findings with regard to the finite difference method and further refined by many 

Because of the Lagrangian aspects of this technique it is applicable to flows with 
free surfaces, but it also maintains Eulerian aspects to overcome undesirable grid distortions 
often associated with Lagrangian methods. This technique is referred to as an arbitrary 
Lagrangian-Eulerian method because there are three options for moving vertices: (1) they can 
flow with the fluid for Lagrangian computing, (2) they can remain fixed for Eulerian computing 
or (3) they can move in an arbitrarily prescribed way to give a continuous rezoning capability. 

The basic hydrodynamic part of each cycle of the ALE method is divided into three phases. 
The first phase is a typical, Lagrangian calculation. In the second phase, called the rezoning 
section, rezone velocities are specified to reduce distortions in the fluid domain. The third phase 
performs all the convective flux calculations, which must be included if the mesh is not purely 
Lagrangian. The purpose of using three phases is to know the Lagrangian motion before a 
choice is made for rezoning. This is the most general case. In some instances, however, the 
rezoning can be determined in advance and it is unnecessary to perform phase I and I1 calculations. 
For example, in a pure Eulerian calculation all vertices retain their initial positions. Conversely, 
if a pure Lagrangian calculation is desired, the phase I1 and I11 steps are unnecesssary since no 
rezoning is required. In practical applications, the hydrodynamics problem would be run for a 
while with the pure Lagrangian code and then stopped when the mesh begins to get somewhat 
distorted. The rezone code would then take over and smooth out the mesh, so that a desirable 
mesh configuration can be maintained. It should be noted that there is no time change during 
the rezoning operation. Then the mesh would be passed back to the hydrodynamics code for 
more time-dependent calculations. By this process of infrequent use of the rezoning, it is hoped 
that the mesh distortions may be held down enough to permit the problem to run satisfactorily. 

KINEMATICS IN THE ALE DESCRIPTION 

This section describes certain concepts, definitions and relations basic to the arbitrary 
Lagrangian-Eulerian description. 

Co-ordinates 

Figure 1. The position vector of a material point P in this region is given by 
The material points of a continuous medium at time t = 0 occupy a region B, as shown in 

X=(X,,X,,X3).  (1) 

The co-ordinates Xi are called material co-ordinates. In the deformed configuration the particle 
originally at P is located at the point p and has the position vector 

x = (XI 9 X2r x3). (2) 
The co-ordinates xi, which give the current position of the particle, are called spatial co-ordinates. 

In the Lagrangian description the motion of the body carries various material particles through 
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Spatial Domain 

Material Domain 

. i n  

Figure 1. Co-ordinate system 

various spatial positions. This idea is expressed mathematically by the relations 

xi = X i ( X j ,  t). (3) 
These equations may be interpreted as a mapping of the initial configuration into the current 
configuration. For obvious reasons, the mappings (3) should be continuous, single-valued and 
possess a unique inverse for the Eulerian description as 

xi  = X i ( X j ,  t). (4) 

The necesssary and sufficient condition for the inverse functions (4) to exist is that the Jacobian 
determinant, 

should not vanish. 

as shown in Figure 1, which is independently prescribed as a function of space and time, by 
In addition to the spatial and material co-ordinates, a referential co-ordinate system is defined, 

xi = x i (x j ,  t)* (6)  
By analogy with equation (5) one defines the Jacobian, 

(7) 

for the transformation between referential and spatial co-ordinates. 

Material derivatives of tensors: velocity and acceleration 

In fluid mechanics, however, the rates of change of various kinematical quantities are generally 
more important than the quantities themselves. Let f be any physical quantity which is a 
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continuous function of the spatial variables x i  and time t, then in the case of the Lagrangian 
description the material derivative is defined by 

where the particle time derivative a{/& is taken with 
The spatial time derivative is given by 

and the referential time derivative is 

The velocity of a material particle is given by 

and the mesh velocity is defined as 

X i  held constant. 

The difference of these two velocities is denoted by ci: 

c. = u .  - w .  
I 1 1 .  

ci is called the convective velocity in the mixed representation. 
In the case of the ALE representation, the material time derivative is defined by 

Equation (1 1) can also be rewritten as 

or 

From equation (16) the following equation can be obtained: 

dxj- axj 
- ( V i  - w i ) - .  

at ax i  
Introducing equation (17) into equation (14) the following equation can be derived: 
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The acceleration components a, in the case of the ALE description are given by 

a. = - + c ju i , j .  ' 2 I*) 
BASIC EQUATIONS FOR THE ALE DESCRIPTION 

In this paper, the equations are described using indicia1 notation and the summation convention for 
repeated indices. The problem under consideration is the unsteady motion of a surface wave under 
gravity in a tank. Let V be the fluid domain, which is surrounded by a piecewise smooth boundary 
S .  To illustrate the fluid-mechanical content of the formulation, the equations of conservation of 
momentum and mass for incompressible Newtonian fluids in the arbitrary Lagrangian-Eulerian 
form are given by the Navier-Stokes equation and the equation of continuity as follows: 

(20) 

ui,i = 0, in V.  (21) 

Here ui = u i ( x ,  t) are the components of the velocity field in the mixed co-ordinate system xi(i = 1,2) 
and x is used as shorthand for (xl, x,); fi(i = 1,2) are the components of the gravitational 
acceleration and t is the time. The total stress tensor cij is given by 

cij = - pdij + V ( q j  + u j , i ) ,  (22) 

where p is the pressure and v is the coefficient of constant kinematic viscosity. 
The boundary conditions for the ALE formulation are identical to those for the Eulerian or 

Lagrangian methods. In the present analysis, the boundary S consists of two kinds of boundaries, 
namely the free surface boundary S ,  and the solid wall boundary S ,  of the container. The 
conditions for velocity ui and surface force ti are introduced as follows: 

ui = 6,, on S , ,  (23) 

ti = { - p a i j  + v ( v ~ , ~  + u j , i ) } n j  = (, on s , ,  (24) 

where the superposed-denotes the functions which are given on the boundary and n j  means the 
unit normal to the boundary. In the case of a free fluid boundary, the time evolution of the height 
function is governed by a kinematic equation expressing the fact that the free surface must move 
with the fluid, 

where is the surface elevation measured from the fundamental fluid level and up) and wy) are the 
xi-components of the fluid particle velocity and mesh velocity at the nodal points of the free surface. 

The initial conditions for Navier-Stokes problem (20)-(22) consist of specifying the values of 
velocity and pressure at  the initial time: 

with the initial velocity ujo)(xi) satisfying the incompressibility condition: 

Uj?) = 0. (28) 
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WEIGHTED RESIDUAL FORMULATIONS 

A week formulation of problem (20)-(28) is obtained by multiplying the differential equations by 
suitable weighting functions and integrating over a domain V(x i ,  t), which is bounded by a surface S 
with a unit normal ni. Next, multiply the momentum equation (20) by the weighting function u:,  
and the continuity equation (21) by the weighting function q*, and then integrate over V .  After 
integration by parts of the stress term, use of the divergence theorem and of the boundary 
condition (24), the following weak form of the original problem is obtained: 

Jv(u:?)dV= - J V (v:cjui,j)dV+ 

with 

r 

In a similar fashion, the weak form for equation (25) can be obtained by multiplying by the 
weighting function q* as 

Under suitable smoothness conditions for the boundary date Oi and (, the Navier-Stokes problem 
(29)-(33) admits at least one solution. 

TIME DISCRETIZATION 

In order to implement a numerical solution procedure for the arbitrary Lagrangian-Eulerian 
formulation in this paper, the momentum equation and the incompressibility constraint of the 
Navier-Stokes problem are treated according to a procedure consisting of three phases. Let ul and 
p" be the velocity and pressure fields at time t", where t" = t"+l + At. From vl, p" and the boundary 
specifications, the fields u;" and p " + l  are calculated as follows. 

Phase I: Lagrangian calculations 

Phase I is governed by the Lagrangian equations obtained from equations (29)-(33) by setting cj 
to zero in equations (29) and (33). In this phase the material acceleration can be approximated by 
the increment of the velocity in the following form: 

where the velocities and positions of each fluid particle P, = P,(xp, t o )  with the initial location xp 
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at time to are defined by 
u; = Vi(P,, t"), 
x; = X i ( P , ,  t"), 

v: = "(P,, t"+ I), 
X I  = Xi(P,, t"+'). 

and 

At first, an intermediate velocity field 61, not satisfying the incompressibility constraint, is 
derived from a time-discretized version of the weak form of the momentum equation in which the 
pressure terms are omitted. Then, the field ijk is decomposed into the sum of a vector field with zero 
divergence and a vector field with zero curl. The divergenceless component is the end-of-step 
Lagrangian velocity vector u:, whereas the irrotational one is related to the gradient of the pressure 
field pL. 

The intermediate Lagrangian nodal velocity field ijk, not satisfying the incompressibility 
condition, is derived from the previous cycle's velocity vectors, position vectors and body forces by 
employing the purely explicit Euler first-order scheme: 

r r  c 

+ v{ J (utju;,j)dV + J V" (v;f,vy,i)dV) 
V" 

(38) GL , = jj. 6 ,  on sz. 
Once the intermediate velocity has been computed, the end-of-step velocity uk is obtained by 

adding to 6: the dynamical effect of the still-unknown pressure pL, which is to be determined so that 
the weak form (30) of the incompressibility condition remains satisfied: 

r r r 

jvL(q*z&)dV=O. (40) 

Perhaps the most important feature of the current formulation, compared to previous finite 
element methods, is the pressure solution approach. The current formulation is an iterative, 
segregated solution method along the lines of most finite difference methods. Morever, the present 
formulation uses an equal order interpolation approximation for velocity and pressure rather than 
a mixed order approximation. The use of an equal order approximation for pressure represents 
a significant departure from the use of a mixed order approximation, which has been advocated 
by numerous researchers. An equal order approximation may be used if the formulation includes 
a Poisson type of equation to solve for pressure. However, there are several difficulties associated 
with the use of a Poisson pressure equation which must be overcome. First of all, a conventional 
Poisson pressure equationz7 imparts no direct continuity constraint, and as a result may provide 
very poor convergence. Secondly, specification of the boundary conditions for the pressure 
equation is not straightforward with the conventional form of the Poisson pressure equation. 
As will be shown, the current approach does not suffer from these difficulties. 
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Using the concept of divergence on both sides of equation (39) together with the incompressi- 
bility constraint vki = 0, the following linear system of equations, which governs the pressure field, 
can be derived: 

r 

The left-hand side of equation (41) contains derivatives of second order which may be reduced to 
first order through an integration by parts. Equation (41) is then 

n 

where the divergence theorem has been used to obtain the boundary integral. To solve the above 
equation (42), the following boundary conditions are applied: 

pL=O, on S,, (43) 

p$ni=O, on S,. (44) 
Once the pressure has been determined from equation (42), Lagrangian velocities are calculated 
from equation (39). Finally, the vertex co-ordinates at the end of the Lagrangian phase are 
calculated by 

At 
2 

If only a Lagrangian calculation is wanted then vertices are moved according to equation (45) and 
the procedure of the phase I calculation can be repeated for more time-dependent calculations. 
Otherwise, rezone velocities must be specified and phase I1 and I11 calculations must be performed. 

(45) x: = x; +-(?If + V l ) .  

Phase I I :  the rezone velocity 

As is well known, in computational fluid dynamics there is often the need to change the 
computational mesh. This may occur, for example, in Lagrangian calculations when the mesh 
becomes severely distorted, or in an adaptive mesh algorithm when the mesh is changed to satisfy 
various criteria. When this happens there is a need to transfer information from the old mesh to the 
new mesh. This transfer of information is an interpolation process which is frequently called 
rezoning (or remapping). Such an interpolation process may be quite arbitrary, but the present 
study is interested in imposing one important restriction, namely that the process should be 
conservative. The conservation equations of fluid dynamics express the fact that certain conserved 
quantities, such as mass, momentum and total energy, are neither created nor destroyed. These 
requirements are clearly satisfied in the next phase by computing the necessary rezoning changes, 
i.e. convective and diffusive fluxes. 

Assume at this point that a field of mesh vertex velocities, wi has been assigned in some 
appropriate fashion with respect to a fixed, Eulerian reference frame. Thus, for a purely Eulerian 
calculation. 

wi = 0 (46) 

(47) 

At the other extreme, a purely Lagrangian calculation would use 
v .  = w. 

I I '  
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In general, the mesh velocities may be any designated functions, and as such they are neither purely 
Eulerian nor purely Lagrangian. Once the rezone or mesh velocities are assigned, vertices are 
moved according to the prescription 

x:+' =xl+Atw, .  (48) 

From these values new element volumes and masses can be computed. 

Phase I l l :  convective flux calculations 

There are two types of quantities to be updated in the rezone: element quantities, namely the 
mass or volume, and vertex quantities, namely the velocity components ui and the pressure field p .  
Using equation (48) new element volumes and masses can be computed. It now remains to describe 
the calculations that account for the transfer of mass and momentum between elements during 
rezoning. A temporary velocity field is first calculated that accounts for the convective fluxes: 

r r r 
(u:v"l+')dV = J (v:v"f)dV + At J (vFcjvl,j)dV, 

V L  V" 
(49) 

I?;+' =z$, on S,. (50) 

Final velocities for the cycle are obtained by combining the temporary velocities a:+' with the 
pressure acceleration in the following manner: 

(u:ul+')dV = (u~v"l+ ' )dV - At (v: py: ' ) d V ,  (51) 

r 

The pressure needed in equation (5 1) is that which ensures satisfaction of the incompressibility 
condition. That is, the final velocity field must possess a zero velocity divergence in every element, 
as described in equation (52). This is accomplished by solving the equation which governs the 
pressure field: 

(q*pyi+ ' )dV = - J (q*v"l,t')dV J v n + l  At y n + ~  
(53) 

The left-hand side of equation (53) contains derivatives of second order which may be reduced to 
first order through an integration by parts. Equation (53) is then 

where the divergence theorem has been used to obtain the boundary integral. To solve 
equation (54), the following boundary conditions are applied: 

p n + ' = O ,  on S , ,  (55 )  

py:'ni = 0, on S,. (56) 

Equation (54) is a symmetric system of linear algebraic equations which may be solved via a direct 
method, such as the skyline version of Gaussian elimination. Once the pressure has been obtained, 
the end-of-step velocity is computed from equation (51). 
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The position of the free surface is calculated from the following equation: 
r c r 

This completes the updating of all quantities. 

FINITE ELEMENT METHOD 

The full discrete form of the problems (37)-(44) and (49)-(57) is obtained by discretizing the domain 
V into non-overlapping subregions called finite elements. In each element the unknowns fields are 
approximated by simple polynomial functions. For the present class of problems let the velocity 
and pressure be represented within an element by 

ui = 

P = Q,aPa, 

(58) 

(59) 

and the corresponding weighting functions are 
v* = Q, u*. a a12 

?* = Q,,?X, (63) 
where ma is the interpolation function, uai represents the nodal value of the velocity at the clth node 
of the finite element in the ith direction and uzi is the nodal value of the corresponding weighting 
function. p a  is the nodal value for pressure at clth node of the finite element and pX is the nodal value 
of the corresponding weighting function. Substituting equations (58)-(63) into (37), (39), (42), (49)) 
(51) and (54), and considering the arbitrariness of the weighting functions, the finite element 
equations for phase I and phase 111 can be derived as follows. 

For phase I I I  

A $ ' P ; + ~ =  - ( ; ) H a i l  n +  1 vp i  -n+ 1 +Q+l,  
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where 

n 

In equations (64)-(70), Ma,  means the lumped mass matrix obtained simply by summing across 
each row of the consistent mass matrix Mae, and placing the results on the diagonal. 

STABILITY ANALYSIS 

In this section the stability criterion is analysed for the one-dimensional advection-diffusion 
equation. The conditions for numerical stability of the equations are provided, resulting from 
the linear spatial discretization combined with a first-order Euler scheme as an explicit time 
integration technique. It is generally known that the explicit method is conditionally stable, and 
that the time increment At has to satisfy the following condition:27 

0 < At < At,,, (71) 
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where Al0 is the limiting value of At and depends on various factors, such as the coefficient of 
kinematic viscosity and mesh size. 

The Navier-Stokes equation is a generalization of the simpler convection-diffusion equation 
and, in the one-dimensional case, it reduces to 

au au a Z v  
-+u--v--0, 
at ax a x 2  

where u is the velocity and U ,  v are a reference velocity and the kinematic viscosity coefficient, 
respectively, and the latter two are assumed constant. Assume an initial condition in the form 
of a spatial Fourier component: 

u(x,O) = u,exp(ia,x). (73) 

The exact solution of the partial differential equation (72) is 

where p, is the frequency of the nth component, on is the spatial frequency and i = ( -  1)lI2. 
Because equation (72) is linear, it is necessary to consider only one component of the summation 
represented by (74), 

u = u,exp {i(o,x + f i , t ) } .  (75) 
To determine the analytic relationship between the spatial frequency and the frequency of the 
nth component, equation (75) is introduced into equation (72) to give 

or, for the frequency p, as a function of on, 

8, = o,(ivo,2 - U ) ,  

- ip, = - (vo,2 + ion U )  

(77) 

= - (6+iw) 

= I.. (78) 
By definition, 6 = YO,' is the exact damping parameter and o = o,U is the exact frequency. 
Therefore, equation (75) can be rewritten in the following form: 

u = u, exp (io,x - vt). (79) 
For a uniform mesh of piecewise linear finite elements, the Galerkin formulation provides spatially 
discrete equations for the nodal values u,(t), n = 1,2,. . . . The equations are 

U V 

2h h 2jn+r(2jn+l -223,+d,-l)+-(u,+1 - U ~ - ~ ) - ~ ( U , , + ~  - 2 v , + ~ , - ~ ) = O ,  (80) 

where h is the dimension of the linear elements. In the case of diagonal mass representation 
r = 0 and in the case of a consistent mass matrix form r = i. In the present case equation (80) 
reduces to 

U V 

2h h 
zi, + -(u,+ 1 - u, - 1) - +u,+ 1 - 2u, + 0,- 1) = 0. 
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The solution of the semi-descrete equation (81) can be interpreted as solution of the simple 
ordinary differential equation 

dv 
dt 
- + xu = 0, 

where the semi-discrete response variable X= 8+ icT, depends on the considered spatial 
approximation. Using Euler’s first order explicit scheme, equation (82) can be approximated as 
follows: 

u,, = V ,  - At 10, 

= (1 - XAt)v,. 

The amplification factor for this problem is 

For stability it is necessary to have 

11 - XAtl < 1, 
or 

At2(F2 + W’) G 2 8 A t .  

From equation (86) the stability condition becomes 

SOLITARY WAVE PROPAGATION 

The analysis for the propagation of a solitary wave is important for the design of breakwaters 
or sea walls, and other offshore structures. The phenomenon of a solitary wave travelling in a 
rectangular channel of uniform depth was first reported by John Scott Russell in 1834. Russell 
defined the solitary wave as a single elevation above the surrounding undisturbed water level, 
neither followed nor preceded by any other elevation or depression of the surface, producing a 
definite transport in the direction of wave propagation only, and travelling without change of 
shape and with essentially constant velocity throughout the observable time of travel. Analytical 
studies for this problem have been carried out by many  investigator^.^*-^^ La’ itone’s 
approximations of a solitary wave are frequently used for comparative study; in these 
approximations velocity, pressure and free surface elevation can be written in the following 
forms: 

q = d + H sech2[ ,/( :$)(XI - c t ) ] ,  
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in which H and d are the initial wave height and still water depth, respectively. In theory, 
Laitone’s formula holds for an infinitely long channel only. Because the computations must be 
done in a finite domain and the fluid at a distance from the wave crest is essentially still, it is 
desirable to define a finite, practical length of the solitary wave. The main consideration is that 
the two vertical walls which constitute the boundaries of the computation region should be far 
enough from the initial wave crest so that the motion of a solitary wave into the still water in 
front of a vertical wall can be closely approximated. For this purpose the effective wavelength 
L was obtained by taking L/2 equal to the distance from the wave crest to the section where 
y~ = 0.01 H according to Laitone’s formula; thus 

Considering H/d = 0.2, the value of L/2 is given by 8d by equation (93). Thus, the two vertical 
walls were located 16d away from the initial crest. The definition sketch is shown in Figure 2. 
The initial condition for this problem is illustrated in Figure 3. The still water depth d is 10 
units, the wave height H is 2.0 units and the horizontal length of the channel is 16d = 160.0 
units. For computation, the density is assumed to be constant, the gravity acceleration is taken 
as g = 9.8 units and the time increment At = 0.02 time units is used. The finite element idealization, 
velocity and pressure contours at the initial stage are shown in Figure 3. Starting from the initial 
condition, the behaviour of the solitary wave can be computed. Computed wave profile, velocity 
and pressure at elapsed times 7.7 units, 15.0 units and 30.0 units are shown in Figures 4-6. The 
time when the wave crest arrives at the right hand vertical wall from the centre of the channel 
is 7.7 time units, which is close to Laitone’s result. 

The run-up height of a solitary wave on a vertical wall R can be obtained by Laitone’s 
approximation: 

d 
4 4 YS 

channel bottom 

Figure 2. Problem definition for solitary wave propagation 
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Mesh Division 

V e l o c i t y  Distribution Aflm+W/,.. 

u 1  Distribution 

u 2  Distribution 

P r e s s u r e D i s t r i bu t i on - 

- 8  .O - 6 h . O  - 4  . O  - 3  . O  - 1  . O  0 .  16I.O 32I.O 48I.O 64I.O 8Ol .O 

Figure 3. Initial conditions 

R d = 2( ;) + ;( T). (94) 

Using H i d  = 0.2, R is 4.2 units in this computation, whereas the computed result is R = 4.48 
units. This clearly shows that the present method is not affected by any artificial damping effect. 
The pressure p is almost equal to hydrostatic pressure, and this result is reasonably well in 
agreement with practical behaviour. Thus the successful application of the present approach to 
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M e s h  Division 

P r  e s s ur e D i s t r i bu t i on 

-8  . O  -614.0 -4b.O -3b.O -16 .0  0 .b  16I .O 32I.O 48I.O 64I.O 80!0 

Figure 4. Computed results at time t = 7.7 

the run-up of a solitary wave indicates the possibility of employing the same technique to attack 
a wide variety of water wave problems. This extension will prove to be most valuable in problems 
where analytic methods are difficult, if not impossible. 

LARGE AMPLITUDE SLOSHING DYNAMICS 

To show the adaptability of the present arbitrary Lagrangian-Eulerian finite element method, 
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Mesh Division 

I 
P r e s s u r e  D i s t r i b u t i o r i  
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- 8  . O  - 6 h . O  - 4 h . O  - 3  . O  -16 .0  0. 16I.O 32'. 0 48I.O 64I.O BO'.O 

Figure 5. Computed results at timc r = 15.0 

the analysis of a case involving large amplitude sloshing dynamics in a rectangular tank with 
constant or varying water depth has been carried out. The physical problem is pictured in 
Figure 7. In this problem, a fluid sloshes in a rectangular container. At first, the analysis is 
carried out for the rectangular tank with constant depth whose width (L)  is 4.8 units and the 
height of the original free surface (D) is 4.0units. In this case, the fluid, initially at rest in a 
rectangular tank, is impulsively set in motion by a cosine pressure pulse at the free surface. The 
pressure pulse is given by 
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nm 

Mesh Division 

Velocity Distribution 

u 1  Distribution 

V ,  Distribution 

I 

Pressure Distribution 

-8b.o - 6 b . o  - 4 b . o  - & . a  o . b  201. 0 40'.  0 60'. 0 801. 0 

Figure 6 .  Computed results at time t = 300 

p ( t )  = A d ( t ) c o s ( k x , ) ,  (95) 

where h(t)  is the Dirac delta function. A gravity acceleration of one unit acts downwards and 
the amplitude of the impulsive motion is assumed to be unity. 
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p ( t )  = Ab( t ) cos (kx l )  
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Figure 7. Problem definition for sloshing dynamics 
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Figure 8. Amplitudes of spike and bubble as functions of time for sloshing dynamics 

The calculation started with a half-wave impulsive loading of the free surface as given in 
equation (95). The amplitudes of the spikes and bubbles as functions of time through many 
complete periods of oscillation are shown in Figure 8. One of the principal manifestations of 
non-linearity is seen in the enhanced amplitude of the spike side and the reduced amplitude of 
the bubble. The decreased frequency is indicated by shifts in both the time of maximum amplitude 
and the times for return to zero amplitude. 

The computation of the non-linear oscillation in a tank with varying water depth has also 
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been carried out. A schematic view of the tank and the boundary conditions are shown in 
Figure 9. The bottom width of the tank is 10.0 units and the depth is 10.0 units. A gravity 
acceleration of one unit acts downwards and the amplitude of the impulsive motion is assumed 
to be 10.0 units. The calculation was performed with viscosity 0.01 units. Figures 10-14 show 
a sequence of mesh configurations at a sequence of times. In this calculation the rezoning is 
performed at every 1000 time levels. From the results, it can be seen clearly that the rezoning 
process makes a liner mesh where the speed of the fluid particle is high and a coarser mesh 
where the speed is low. The non-linear effects are also cearly shown in all these computed results 
by noting the movement of the nodal points in the whole region. At = 0.0025 units was used and 
a stable calculation was obtained. 

Figure 9. Schematic view and boundary conditions 

Figure 10. Computed mesh diagram at time t = 5.0 
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Figure 11. Computed mesh diagram at time t = 10.0 

Figure 12. Computed mesh diagram at time t = 15.0 

Figure 13. Computed mesh diagram at time t = 20.0 
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Figure 14. Computed mesh diagram at time t = 25.0 

CONCLUDING REMARKS 

The conclusions from the work described in this paper are: 

1. 

2. 

3. 

4. 

5. 

6. 

The arbitrary Lagrangian-Eulerian (ALE) technique has been presented as a simple and 
efficient means of numerically treating free boundaries embedded in a calculational mesh of 
arbitrary Lagrangian-Eulerian elements. 
This new algorithm is particularly useful because it uses a minimum of stored information, 
treats complicated free boundaries automatically, and could be extended to three 
dimensions. 
The ALE technique was described in detail, as it has been used to follow free surfaces in an 
incompressible hydrodynamics code. The advantages of the ALE method include its ability 
to resolve arbitrary confining boundaries, to have variable zoning for purposes of obtaining 
optimum resolution and to be almost Lagrangian for improved accuracy in problems where 
fully Lagrangian calculations are not possible. Sample calculations with the developed new 
scheme show that it works well for a wide range of complicated problems. 
Since the ALE computing grid can always be rezoned to its original location, it can be used 
for purely Eulerian calculations where boundaries can then be treated as rigid or as input and 
output walls. 
The present computing technique is not affected by the spurious phenomenon of spatial 
oscillations of the pressure-the so-called chequerboard splitting encountered in some other 
studies. 
Because of the highly stable and convergent nature of this method, even for very large time 
steps, it will prove to be a useful tool in the solution not only of free boundary flow, but 
generally of time-dependent fluid dynamical problems. 
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